Source code for pygmt.src.blockm

"""
blockm - Block average (x,y,z) data tables by mean or median estimation.
"""
import pandas as pd
from pygmt.clib import Session
from pygmt.helpers import (
    GMTTempFile,
    build_arg_string,
    fmt_docstring,
    kwargs_to_strings,
    use_alias,
)


def _blockm(block_method, table, outfile, x, y, z, **kwargs):
    r"""
    Block average (x,y,z) data tables by mean or median estimation.

    Reads arbitrarily located (x,y,z) triples [or optionally weighted
    quadruples (x,y,z,w)] from a table and writes to the output a mean or
    median (depending on ``block_method``) position and value for every
    non-empty block in a grid region defined by the ``region`` and ``spacing``
    parameters.

    Parameters
    ----------
    block_method : str
        Name of the GMT module to call. Must be "blockmean" or "blockmedian".

    Returns
    -------
    output : pandas.DataFrame or None
        Return type depends on whether the ``outfile`` parameter is set:

        - :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile``
          is not set
        - None if ``outfile`` is set (filtered output will be stored in file
          set by ``outfile``)
    """

    with GMTTempFile(suffix=".csv") as tmpfile:
        with Session() as lib:
            # Choose how data will be passed into the module
            table_context = lib.virtualfile_from_data(
                check_kind="vector", data=table, x=x, y=y, z=z
            )
            # Run blockm* on data table
            with table_context as infile:
                if outfile is None:
                    outfile = tmpfile.name
                arg_str = " ".join([infile, build_arg_string(kwargs), "->" + outfile])
                lib.call_module(module=block_method, args=arg_str)

        # Read temporary csv output to a pandas table
        if outfile == tmpfile.name:  # if user did not set outfile, return pd.DataFrame
            try:
                column_names = table.columns.to_list()
                result = pd.read_csv(tmpfile.name, sep="\t", names=column_names)
            except AttributeError:  # 'str' object has no attribute 'columns'
                result = pd.read_csv(tmpfile.name, sep="\t", header=None, comment=">")
        elif outfile != tmpfile.name:  # return None if outfile set, output in outfile
            result = None

    return result


[docs]@fmt_docstring @use_alias( I="spacing", R="region", V="verbose", a="aspatial", f="coltypes", i="incols", r="registration", ) @kwargs_to_strings(R="sequence") def blockmean(table=None, outfile=None, *, x=None, y=None, z=None, **kwargs): r""" Block average (x,y,z) data tables by mean estimation. Reads arbitrarily located (x,y,z) triples [or optionally weighted quadruples (x,y,z,w)] and writes to the output a mean position and value for every non-empty block in a grid region defined by the ``region`` and ``spacing`` parameters. Takes a matrix, xyz triplets, or a file name as input. Must provide either ``data`` or ``x``, ``y``, and ``z``. Full option list at :gmt-docs:`blockmean.html` {aliases} Parameters ---------- table : str or {table-like} Pass in (x, y, z) or (longitude, latitude, elevation) values by providing a file name to an ASCII data table, a 2D {table-classes}. x/y/z : 1d arrays Arrays of x and y coordinates and values z of the data points. {I} region : str or list *xmin/xmax/ymin/ymax*\[\ **+r**\][**+u**\ *unit*]. Specify the region of interest. outfile : str The file name for the output ASCII file. {V} {a} {i} {f} {r} Returns ------- output : pandas.DataFrame or None Return type depends on whether the ``outfile`` parameter is set: - :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile`` is not set - None if ``outfile`` is set (filtered output will be stored in file set by ``outfile``) """ return _blockm( block_method="blockmean", table=table, outfile=outfile, x=x, y=y, z=z, **kwargs )
[docs]@fmt_docstring @use_alias( I="spacing", R="region", V="verbose", a="aspatial", f="coltypes", i="incols", r="registration", ) @kwargs_to_strings(R="sequence") def blockmedian(table=None, outfile=None, *, x=None, y=None, z=None, **kwargs): r""" Block average (x,y,z) data tables by median estimation. Reads arbitrarily located (x,y,z) triples [or optionally weighted quadruples (x,y,z,w)] and writes to the output a median position and value for every non-empty block in a grid region defined by the ``region`` and ``spacing`` parameters. Takes a matrix, xyz triplets, or a file name as input. Must provide either ``data`` or ``x``, ``y``, and ``z``. Full option list at :gmt-docs:`blockmedian.html` {aliases} Parameters ---------- table : str or {table-like} Pass in (x, y, z) or (longitude, latitude, elevation) values by providing a file name to an ASCII data table, a 2D {table-classes}. x/y/z : 1d arrays Arrays of x and y coordinates and values z of the data points. {I} region : str or list *xmin/xmax/ymin/ymax*\[\ **+r**\][**+u**\ *unit*]. Specify the region of interest. outfile : str The file name for the output ASCII file. {V} {a} {f} {i} {r} Returns ------- output : pandas.DataFrame or None Return type depends on whether the ``outfile`` parameter is set: - :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile`` is not set - None if ``outfile`` is set (filtered output will be stored in file set by ``outfile``) """ return _blockm( block_method="blockmedian", table=table, outfile=outfile, x=x, y=y, z=z, **kwargs )
Copy to clipboard